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Continued fraction solutions in degenerate perturbation 
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Belfast, Belfast BT7 lNN, UK 

Received 23 September 1976 

Abstract. A generalization of a previously derived expansion of a determinant in terms of 
determinants of progressively lower order is obtained and used to discuss the eigenvalue 
problem in the cases when two or more elements are degenerate. The development is exact 
for the case of a finite determinant, and represents a perturbation series for an infinite 
determinant. A procedure is given for writing down the expansion to any order without 
using detailed algebra. An application to inhomogeneous systems of linear equations is also 
briefly discussed. The continued fraction methods are more straightforward to apply 
(particularly for the higher orders) and are more rapidly convergent than standard perturba- 
tion theory. 

1. Introduction 

In a previous publication (Swain 1976, to be referred to as I) we have discussed 
continued fraction solutions to systems of linear equations which are particularly useful 
in the absence of degeneracy. To illustrate the main points of interest here we first of all 
consider the eigenvalue problem 

det (aIi -AS,) = 0. (1) 

In the final section of I we considered an iterative method of obtaining the eigenvalues A 
in the situation where the diagonal elements uii were much larger than the off -diagonal 
elements, uti ( i  Zj). A zeroth order approximation to the eigenvalue A, is then 

A F’ = up, 

and an iterative scheme was described for obtaining the higher order approximations. 
This procedure may run into difficulties when there is degeneracy, that is, where there 
exists another diagonal element, uqq say, which is equal (or nearly equal) to U,,. A 
method of rearranging the equations to avoid this difficulty was described, and although 
this would be straightforward to apply in the case of single degeneracy, it would be much 
more difficult to deal with multiple degeneracy upp = uqq = U,. . . . Accordingly, in this 
paper we develop a general method for dealing with degeneracies of any multiplicity. A 
simple procedure for writing down an appropriate form of the eigenvalue equation to 
any desired order is given. 

155 



156 S Swain 

The advantages of the present method over conventional degenerate perturbation 
theory are: (a)  for a finite determinant the series terminates and is exact; ( b )  the 
continued fraction structure usually ensures much more rapid convergence than a 
power series development; (c) extension to higher orders is simple and straightforward; 
and ( d )  the convergence of the iteration process in any order is not affected by problems 
of degeneracy. Thus the numerical procedures are much simpler. 

In 0 2 we obtain an expansion for a determinant in terms of determinants of lower 
order which is used to develop the continued fraction structure. This is particularly 
useful when two diagonal elements are equal. A set of rules for writing down the 
expansion to any order is given; these rules apply with obvious generalizations to the 
situation where three or more diagonal elements are equal. In 0 3 we discuss the 
eigenvalue problem in detail, and in 0 4 we consider higher order degeneracy. Finally, 
in 0 5 we discuss very briefly the problem of inhomogeneous linear equations. 

The methods described here are perhaps particularly useful in quantum theory, but 
the discussion given is quite general. 

2. Expansion of a determinant by two elements 

In I, the following expansion of the determinant of a matrix, d=det(aij) ,  was used to 
develop the continued fraction theory: 

d = a,,d'- aiaaa+Pi + C aiaaaBaB+da'B,i 
a # j  a # j  j3 #a,j 

where d a s B  .v.... denotes the determinant obtained from d by deleting the ath, Pth, 
flh, . . . rows and columns. For a finite determinant the series terminates, and the 
resulting expansion is exact. Note that if d is a determinant of the Nth order, we must 
adopt the convention that 

d 1 , 2 , 3 , . .  . N - l , N  - - 1  (4) 

(i.e. the determinant obtained from d by deleting all its rows and columns has the value 
unity). Let us introduce the term stare for the suffices of aii. The significant feature of 
the expansion (3) for our present purposes is that all the determinants on the right-hand 
side contain no coefficients involving the state j. Suppose two states p and 4 are 
degenerate. We wish to obtain an expansion for d in terms of determinants which do 
not involve the states p and 4. It will be seen later that by doing this no problems 
associated with the degeneracy of the states p and 4 will arise. Settingj = p in (3) we see 
that we have to consider determinants of the type dp, daSp, da.B*P,. . . which may 
themselves be expanded using (3). We take the leading element in each case to be aqq, 
when we obtain 
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and so on. If we substitute these expressions into (3) we obtain an expansion for d in 
terms of determinants in which all reference to the selected states p and 4 is deleted. 
Explicitly, we obtain 

We emphasize that for a finite determinant the expansion terminates and is exact. 

sides of equation (7) by dPsq : 
To express this in a form suitable for a continued fraction expansion we divide both 

where the 9 functions are defined by the relations 

We note that the second of the expressions (9) may be written 

Equation (10) is an example of the more general relationship 

~ ~ y , , , . \ g ~ ” ’  ” = g % Y . . A W .  

According to I, equation (lo), we have the following expressions for the 9:..“: 

Repeated use of expression (12) for the higher order 9 functions which appear in the 
denominators of the right-hand side of this equation produces a continued fraction 
structure. 

Instead of expressing 9% as the product of two 9 functions with single suffices, we 
may obtain an expansion for it directly by considering the expression for daw/dwus 
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expanded according to (8): 

9% 3 & p / & q a o  

Before discussing the implications of equation (8) it is worthwhile examining its 
structure to see whether we can determine any pattern in the terms which appear. We 
may divide the combinations of coefficients aij appearing in equation (8) into two types: 
reducible (or disconnected) and irreducible (or connected). An irreducible combina- 
tion is one in which the final state of one coefficient is identical to the initial state of the 
following coefficient. Thus a,a,,aaBapP is irreducible (connected) and may be rep- 
resented by the irreducible (connected) process 

p + q + a  + p  + p .  (14) 

A reducible combination is one which splits up into the product of two or more 
irreducible combinations; it may be represented by a reducible (or disconnected) 
process. Thus the combination apaaapaqgapq is reducible, and is represented by the 
process 

p + f f + p ;  q + P + q ,  (15) 

which is clearly the product of two irreducible processes. Note that in both types of 
combination, no two initial states and no two final states are identical, but each initial 
state is identical to one final state. In every irreducible combination in equation (8) the 
principle stares p and q both appear, whereas in the reducible combinations p always 
appears in one factor and q in the other. 

Since we may write 

apmaap = aapapa (16) 

the processes corresponding to this combination may be written in either of the two 
ways 

p+,cu+p or a + p + ( u .  (17) 

A logically satisfactory way to represent this term would be as a cyclic process 

n 
P f f  
W 

but as this is cumbersome, especially for combinations of higher order, we do not adopt 
this approach. Instead it should be understood that the initial and final states are 
identical, although this is not shown explicitly: 



Continued fraction solutions in degenerate perturbation theory 159 

Following the principles listed in the previous two paragraphs we may list all the 
combinations which contribute to equation (8) as follows: 

Order Reducible Irreducible 

Second P'P;4+4  P + 4 + P  
Third P + P ; 4 + " + 4  P ' 4 + a + P  

Fourth P+P;q',"+P'q P + C l ' f f + P + P  
p + a  " P ;  4'P'4 P + f f  +4-*P'P 
P'ff ' P ' P ;  4'4 p + a + p  +q ' p .  

P + f f  + P ;  4'4 P + " + 4 + P  

The states a, p, . . , which must be different from p or q we will refer to as 
intermediate states. It is easy to see that this list includes all the reducible and irreducible 
processes involving the principal states p and q up to and including the fourth order. 

The contribution of each process to d/dw is obtained by the following procedure: 
with each transition i +j-associate the factor aij ;  take the product of all such coefficients, 
together with the factor (- l)n+'/9s.,,, where a, p, . . . , ,U is a list of all the inter- 
mediate states which appear in the process, n is the order of the process, and r is the 
number of reducible factors in this process. (In this section r is always eqpal to 1 or 2). 
For example, the process 

makes the contribution 

Adding all such contributions up to order n gives the expansion of d/dm to this order. 
We thus have a way of obtaining our expression for d/dm to any order without the 

labour of performing the direct substitutions necessary in first obtaining expression (8): 
we merely list all the reducible and irreducible processes involving the principal states p 
and q, and associate contributions with them as previously described. 

( p q )  = contribution of reducible and irreducible processes involving the principal 

( p q  ; a) = contribution of reducible and irreducible processes involving the principal 

More succinct expressions may be obtained by employing the notation: 

states p and q only, 

states, p and q, and the one intermediate state a, 

Then equation (8) may be written 

and equation ( 1 3 )  as 
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Finally, we rearrange equation (8) into a more compact form. We note that the 
terms involving the diagonal elements app and aqq in equation (8) may be written 

is equivalent to the sum of all irreducible contributions from q to q with the state p 
excluded. 

By comparing expression (27) and (12) it is clear that 

q= 9:-aqq. (28) 

Hence we may write equation (8) as 

d/dW = 9:9;-- w y p  U, 

= ( a p p  - Y m q q  - - %%- U, 

where (-Uw) is the contribution of the off-diagonal terms in equation (8), i.e. 

+ c c (~,a,uaapasq + ~PuaaqaqBaBP 

+ ~ p a a a B a p q a q p  - ~,aa8,Bal3q)/9atC4p+ * + * . 
a#wB+aw 

(30) 

We now consider the eigenvalue problem (1). The determinant in that equation is 
obtained from d by replacing every diagonal element aii by (aii - A ) .  Consequently, 
using this prescription and equation (29b), the eigenvalue problem (1) becomes 
equivalent to 

(a,,-A - WZ(A))(aqq-A- WZ(A))= W;(A)WZ(A)+U,(A) (31) 

where we have indicated explicitly that the W s  and U are now functions of A. 

3. The eigenvalue problem 

Before considering the application of equation (3 1) to the degenerate eigenvalue 
problem we illustrate the problems that can arise in applying the methods described in I 
in these circumstances. As an example, we consider the problem of finding the 
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eigenvalues of the Hermitian matrix 

El V I Z  v13 V I ,  . * * 

where 1 K,(’<< Ei for all i and j .  According to equation (32) of I the first few terms in the 
eigenvalue equation for this matrix may be written (supposing we want the eigenvalue 
near E,) 

- . . . =o .  (33) 
I Vl2l2 - I v1;r El-A - I vz312 E3-A - 1 V d 2  E:!-A- E3-A-. . . Ez-A-.  . . 

To solve equation (33) iteratively we might take A(’)=& as the zeroth order 
approximation. A first iteration then gives 

which is satisfactory unless there is degeneracy (or near degeneracy). Suppose for 
example E2 =El:  then if I V121 # 0 the expression (34) diverges. In this case one can get 
around the problem by solving for the roots near A =El and A = E2 simultaneously, as 
described in I (cf equation (34) of I). However, even if 1 V121 = 0,  although (34) is then 
apparently satisfactory as a first iteration, we do not avoid the difficulty-it merely 
reappears in the higher iterations. Thus in the second iteration, the denominator in the 
final term of (33) contains the term - 1  V2312/(E2-A) which on substituting for A from 
(34), is of the order of unity in the degenerate case, whereas in the non-degenerate case 
it is of the order of 1 V2312/(E2 - El).  Clearly the convergence of the iteration scheme 
will be disrupted. 

Let us now use equation (3 1) withp = 1, q = 2 to tackle the degenerate problem. No 
difficclties of the type encountered in equation (33) will occur here, as the 9 functions 
which appear in equation (31) are all of the type air2, 9af:’,, etc, which means that the 
terms (A -El), ( A  - E2) never appear in the denominators. Retaining only contributions 
up to and including fourth order in the 1 vi( and collecting together a few terms on the 
right-hand side, we obtain (setting El = E2 = g), 

We have taken the zeroth order approximation to the 9 functions in equation (32), 

(36) 

e.g. 

ab2@) = A  -Ea +O(l V,.]’) -8- E, + O() vi/) 
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except for the term which corresponds to the second one in the final large parentheses of 
equation (35), where, to be consistent to fourth order, we should replace A not by,??, but 
by its value correct to first order in I vj/, A('). 

We first consider the case where IV121#0. Clearly the lowest non-trivial 
approximation is 

(A -E)(A -E)=IV12I2 (37) 

A z )  = E *  I Vl21. (38) 

which gives the first-order solution 

To obtain the second approximation we may omit the first and last terms on the 
right-hand side of equation (35), and also set A'" = B. This gives 

or, on expanding the square root, 

where V12 = I Vl21 ei'. Expression (40) is identical with the standard expressions 
obtained by other means (cf equation (175) of A Dalgarno in Bates 1961). The 
formulae for the higher orders rapidly become very complicated (cf equation (176) of 
Dalgarno). The advantage of the present method is that, when applied to a definite 
problem where the E, and Vi are known numerically, it is straightforward to write down 
equation (31) to any desired degree of accuracy, and it may then be solved iteratively in 
the manner indicated through equations (37) to (40). 

The case where I V12] = 0 is easily dealt with; in this event the last bracketed 
expression on the right-hand side of equation (35) vanishes, and one is left with a 
quadratic equation to solve for the A'S, which is identical to that which would be 
obtained from the standard methods of perturbation theory (see e.g. Schiff 1955 
equation (25.24)). 

4. Expansion of a determinant by three or more elements 

We may extend the procedure of 5 2 to obtain an expansion of the determinant d in 
terms of determinants of lower order which contain no reference to the states p, 4, r, 
s, . . . . Consider first the case where three states p, 4 and r are to be excluded. Starting 
from equation (7), we could substitute the expansions 

etc, in the right-hand side, and simplify. However, it turns out that we can obtain the 
same result by listing all the reducible and irreducible processes involving the three 
principal states p ,  9 and r, and associating contributions (with obvious generalizations) 
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with them as described in § 2. The lowest order processes are third order, and these and 
the fourth order processes are listed below: 

Third order 

p + p ; q + q ; " '  

q + q ; p + r + p  

P + 4 + ' + P  
Fourth order 

p + p ;  q + q ;  r + a + r  

p + p ;  q + a  + r + p  

q + q ;  r + r ; p + a + p  

q + q ; p + r + a + p  

r + r ;  p + q  +a + p  

p + a + p ; q + r + q  

p + q + a + r + p  

p + a + q + r + p  

p + r + q + a + p  

Writing down the contributions of these processes as described in § 2 we obtain 

= appaqqarr - appaqPrq - aqqapPp - adpqaqp + awaqPrp + apPrqaqp 

+ 1 ( - appaqqaraaar - apparPqnaaq + appaqoaaPrp + appaqgrnaap 

- aqqarPporaap + aqqapaaaPrp + aqqapPraanp + arPpcraaqaqp + arPpqaqaaap 

+ apqaqparnaar + apPaapaqPrq + apPpaqaaaq - awaqnacrPrp - apnaaPrqaqp 

- apaanqaqPrp - apqaqPrnanp - aplarqaqaaPp - apPrnauqaqP)/~aEt4'+ . . . . 

a # P q r  

(44) 
This expansion is clearly quite complicated but it must be remembered that in many 
applications some of the ani will be zero. Thus if we have 

(45) apq = as. = arp = 0 

the above expression simplifies to 

d -p= appaqqar - C (appaqqarnanr + a p p a ~ q n a n q  +a,,a~~a,, ,) /~aEt4'+ . . . (461 

and the corresponding eigenvalue equation in the degenerate case (app = aqq = arr = 6 )  
becomes 

n # p q r  
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As before, this can be solved by iterative methods. An application of the expansion (44) 
to a problem involving multi-quantum resonances in a spin-1 atom will be discussed in a 
forthcoming publication (Hermann and Swain 1976). 

5. Inhomogeneous equations 

In this section we briefly consider the solution of the (possibly infinite) set of linear, 
inhomogeneous equations 

which as we have shown in I, have the solution 

We have discussed the application of solutions of this type to problems in time- 
dependent quantum mechanical perturbation theory in Swain (1975, to be referred to 
as 11). In this paper the x j  were the Laplace transforms of the time development 
operator, so that the determinant SB was in fact a function of the Laplace variable 
A : &=&!(A). If the inverse Laplace transform is found by the calculus of residues, 
then, to find the poles, one has to solve 

&(A) = 0 (50) 
-in other words, the eigenvalue problem reappears in a different guise, and with it the 
problems of degeneracy. We therefore consider the problem of writing equation (49) in 
a form more suitable for dealing with the degenerate case. For brevity, we consider just 
the case of two degenerate states, p and q. 

By making use of the definition (9) we obtain, for j f p ,  q, 

and so on. Substituting these expressions into equation (49) we obtain 

This is an equation of the desired form, as all the difficulties associated with the 
degeneracy of the states p and 4 appear in the factor 1 / g w ( A )  which is outside the 
bracket in (53). This factor can be dealt with as described in 00 2 and 3. 

For the case when j = p or q-say j = p to be definite-we have 

a U b 9:6p + . . .). (54) x p = z ( b 9 t -  1 E apubn -a?+ E 
u z p  9: n * p p f u p  9% 

To give a trivial illustration of the method, we apply the time-dependent perturba- 
tion theory of I1 to the problem of a two-level atom interacting with a quantized rotating 
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field in the dipole approximation. The Hamiltonian is 

~==E,I(Y)((YI+E,IP)(PI+h.wata + g ( a b > ( P I + I P > ( ~ l )  (55 )  

where E, and E, are the energies of the atom, whose states are la) and IP) respectively, 
a and at are the Bose annihilation and creation operators for a photon of frequency w, 
and g is a coupling constant (assumed real for simplicity). We consider the unperturbed 
states Ip)  = /a, n), 14) = IP, n + 1) whose energies are E, + n Aw, E, + (n + 1)hw respec- 
tively. According to I1 and equation (54) the Laplace transform of the time- 
development operator matrix element U,, ( t )  is given exactly by the relation 

where z is the Laplace variable, and bp and 6, are the initial weightings of the states p 
and q. From equations (13) and (12) we readily obtain the exact results 

aW ( z ) = (E, - z)(E, - z ) - g2 (57) 

and 
q ( Z )  = Eq - 2. 

Hence 

For simplicity we assume E, = Eq =E, then (59) has poles at z = E f g, and the inverse 
Laplace transform gives 

U,, ( t )  = - bp cos (gt) + ibq sin (gt) (60) 

or, for the probability Ppp( t )  = lUp,(t)12, 

Ppp(t) = /bpi2 cos2(gt)+Ibq12 sin2(gt). 

For more complicated systems one would not find finite exact expressions corres- 
ponding to equations (56), (57) and (58); instead one would have infinite series and 
continued fractions which would have to be approximated by truncation at an appro- 
priate stage. 
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